Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Feature Selection and Segmentation for Posterior fossa tumors
Details
Over the last few years segmentation of brain tissues and abnormalities has been an important area in medical imaging. Several morphological imaging techniques have been used to solve this problem. Many fractal based features have been used to analyze brain tumors. These fractal based methods have improved segmentation of brain tumor. This book provides features selection techniques based on statistical model for selecting best features from subset of features and use it for segmentation. Two statistical methods based on Kullback Leibler Divergence and Bayesian models have been analyzed along with segmentation techniques such as SOM and EM. The analysis should help professionals who are working for computer analysis diagnosis of brain tumors.
Autorentext
Shaheen Ahmed received M.S.and Phd in Electrical & Computer Engineering from Wright State University,OH & University of Memphis, TN, USA in 2006 and 2011 respectively.Her research interest includes image processingfocusing on medical images, application of pattern recognition for analysis of MRI, and statistical methodologies.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Autor Shaheen Ahmed
- Titel Feature Selection and Segmentation for Posterior fossa tumors
- Veröffentlichung 01.11.2011
- ISBN 3846538914
- Format Kartonierter Einband
- EAN 9783846538913
- Jahr 2011
- Größe H220mm x B150mm x T9mm
- Untertitel Includes KullBack leibler Divergence and multi class Bayesian feature Selection and segmentation
- Gewicht 227g
- Auflage Aufl.
- Genre Medizin
- Anzahl Seiten 140
- Herausgeber LAP LAMBERT Academic Publishing
- GTIN 09783846538913