Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Feature Selection for Data and Pattern Recognition
Details
This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition.
Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks.
This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.
Recent research trends in feature selection for data and pattern recognition Points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies Presents approaches in feature selection for data and pattern classification using computational intelligence paradigms Includes supplementary material: sn.pub/extras
Inhalt
Feature Selection for Data and Pattern Recogniton: an Introduction.- Part I Estimation of Feature Importance.- Part II Rough Set Approach to Attribute Reduction.- Part III Rule Discovery and Evaluation.- Part IV Data- and Domain-oriented Methodologies.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783662456194
- Auflage 2015
- Editor Lakhmi C. Jain, Urszula Sta czyk
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H241mm x B160mm x T26mm
- Jahr 2015
- EAN 9783662456194
- Format Fester Einband
- ISBN 3662456192
- Veröffentlichung 15.01.2015
- Titel Feature Selection for Data and Pattern Recognition
- Untertitel Studies in Computational Intelligence 584
- Gewicht 729g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 376