Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Fermat's Theorem (Stationary Points)
Details
High Quality Content by WIKIPEDIA articles! In mathematics, Fermat's theorem is a theorem in real analysis, named after Pierre de Fermat. It gives a method to find local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point (the function derivative is zero in that point). So, by using Fermat's theorem, the potential extremums of a function displaystyle f, with derivative displaystyle f', are found by solving an equation in displaystyle f'. Fermat's theorem gives only a necessary condition for extreme function values, and some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can determine if any stationary point is a maximum, minimum, or inflection point.
Klappentext
High Quality Content by WIKIPEDIA articles! In mathematics, Fermat's theorem is a theorem in real analysis, named after Pierre de Fermat. It gives a method to find local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point (the function derivative is zero in that point). So, by using Fermat's theorem, the potential extremums of a function displaystyle f, with derivative displaystyle f', are found by solving an equation in displaystyle f'. Fermat's theorem gives only a necessary condition for extreme function values, and some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can determine if any stationary point is a maximum, minimum, or inflection point.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130256470
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B150mm x T4mm
- Jahr 2009
- EAN 9786130256470
- Format Kartonierter Einband
- ISBN 978-613-0-25647-0
- Titel Fermat's Theorem (Stationary Points)
- Untertitel Theorem, Real analysis, Pierre de Fermat, Maxima and minima, Derivative, Open set, Stationary point, Equation, Necessary and sufficient condition, Inflection point, Second derivative
- Gewicht 124g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 72
- Genre Mathematik