Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Finite Element Methods for Incompressible Flow Problems
Details
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Uniform presentation of finite element methods for incompressible flow problems Covers stationary and time-dependent problems Emphasis on numerical analysis Overview of analytical results for turbulence models Step-by-step presentation of proofs for facilitating the understanding
Inhalt
Preface.- Introduction.- The Navier-Stokes Equations as Model for Incompressible Flows.- Finite Element Spaces for Linear Saddle Point Problems.- The Stokes Equations.- The Oseen Equations.- The Steady-State Navier{Stokes Equations.- The Time-Dependent Navier-Stokes Equations - Laminar Flows.- The Time-Dependent Navier-Stokes Equations - Turbulent Flows.- Solvers for the Coupled Linear Systems of Equations.- Functional Analysis.- Finite Element Methods.- Interpolation.- Examples of Numerical Simulations.- Notations.- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319833644
- Sprache Englisch
- Auflage Softcover reprint of the original 1st edition 2016
- Größe H235mm x B155mm x T45mm
- Jahr 2018
- EAN 9783319833644
- Format Kartonierter Einband
- ISBN 3319833642
- Veröffentlichung 16.06.2018
- Titel Finite Element Methods for Incompressible Flow Problems
- Autor Volker John
- Untertitel Springer Series in Computational Mathematics 51
- Gewicht 1229g
- Herausgeber Springer International Publishing
- Anzahl Seiten 828
- Lesemotiv Verstehen
- Genre Mathematik