Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Finite Volumes for Complex Applications VI Problems & Perspectives
Details
Finite volume methods are used for various applications in fluid dynamics, magnetohydrodynamics, structural analysis or nuclear physics. A closer look reveals many interesting phenomena and mathematical or numerical difficulties, such as true error analysis and adaptivity, modelling of multi-phase phenomena or fitting problems, stiff terms in convection/diffusion equations and sources. To overcome existing problems and to find solution methods for future applications requires many efforts and always new developments. The goal of The International Symposium on Finite Volumes for Complex Applications VI is to bring together mathematicians, physicists and engineers dealing with Finite Volume Techniques in a wide context. This book, divided in two volumes, brings a critical look at the subject (new ideas, limits or drawbacks of methods, theoretical as well as applied topics).
Reviewed by interantional experts Brings a critical look at the subject (new ideas, limits or drawbacks of methods, theoretical as well as applied topics) Includes contributions by mathematicians, physicists and engineers dealing with Finite Volume Techniques in a wide context
Inhalt
Part I Regular Papers.- Part II Invited and Benchmark Papers.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642206702
- Editor Jaroslav Fo t, Ji í Fürst, Florence Hubert, Raphaèle Herbin, Jan Halama
- Sprache Englisch
- Auflage 2011
- Größe H241mm x B160mm x T63mm
- Jahr 2011
- EAN 9783642206702
- Format Fester Einband
- ISBN 3642206700
- Veröffentlichung 21.07.2011
- Titel Finite Volumes for Complex Applications VI Problems & Perspectives
- Untertitel FVCA 6, International Symposium, Prague, June 6-10, 2011
- Gewicht 1765g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 1084
- Lesemotiv Verstehen
- Genre Mathematik