Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Fixed point theorems in Menger spaces
Details
In this book, we study the existence of fixed points for various types of maps, such as compatible of type (P) maps, compatible of type (P1) maps, compatible of type (P2) maps, compatible of type (A) maps and 2-compatible maps in probabilistic metric spaces. We also investigate the existence of common fixed points in Menger spaces. This book is divided into SIX chapters (excluding Chapter 0). Chapter 1: A fixed point theorem for four self maps in a Menger space using a contractive control function. Chapter 2: A sufficient condition for a sequence, in a Menger space, to be Cauchy. Chapter 3: A fixed point theorem for four self maps in a Menger space under the influence of a contractive control function of type (AS) Chapter 4: A common fixed point theorem in Menger probabilistic metric spaces using compatibility. Chapter 5: A common fixed point theorem in Menger spaces using an implicit relation. Chapter 6: A fixed point theorem in Menger PQM spaces using weak compatibility. Each chapter is almost self contained.
Autorentext
I am Dr. S S Ayyappa Sastri working in Gayatri Vidhya Parishad College of Engineering, Madhuarawada, Visakhaptnam, Andhra Pradesh, India. I did my research work in Fixed point theory and its Applications under the guidance of Dr. G. Appala Naidu, Associate Professor and retired Professor K.P.R.Sastry of Andhra University,Andhra Pradesh, India.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659220531
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B220mm
- Jahr 2012
- EAN 9783659220531
- Format Kartonierter Einband (Kt)
- ISBN 978-3-659-22053-1
- Titel Fixed point theorems in Menger spaces
- Autor Sambhara Srinivasa Ayyappa Sastri
- Untertitel Common fixed point theorems in Menger spaces
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 120
- Genre Mathematik