Forecasting of Electricity Consumption using Gaussian Processes

CHF 50.70
Auf Lager
SKU
IDP5DRASFI6
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

On a broad view, the problem of forecasting electricity consumption can be categorized under machine learning, which is the study of computer algorithms that improve automatically through experience. In order to predict how a trend will continue, the prediction model should be able to generalize the knowledge in historical data to unseen future. In this book, the following areas has been covered: The use of Gaussian Processes for electricity consumption forecasting Use of kNN similarity search with Gaussian Processes to reduce the size of the training data (reduce computational cost) Neural Networks for electricity consumption forecasting Exploratory Data Analysis for feature selection and visual analysis of data Combining kNN similarity search with the classical linear regression model to improve prediction accuracy. Comparison of different prediction models including Gaussian Processes, Neural Networks and Local Linear Regression.

Autorentext

Girma Kejela is working as Research fellow at University of Stavanger. His latest projects focus on predictive analysis of Big Data.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639806663
    • Sprache Englisch
    • Größe H5mm x B220mm x T150mm
    • Jahr 2014
    • EAN 9783639806663
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-80666-3
    • Titel Forecasting of Electricity Consumption using Gaussian Processes
    • Autor Girma Kejela
    • Gewicht 150g
    • Herausgeber GlobeEdit
    • Anzahl Seiten 100
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470