Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Forecasting the Government's Yield Curve in the Dominican Republic
Details
This study develops a framework for analyzing the implicit yield curve in Dominican Republic's Central Government's bonds' transactions, reducing it two a limited set of factors that can be interpreted as intertemporal series, and then estimating a macro-financial vector-auto-regression (VAR) model in which they are forecasted along with some economic series, testing several coefficient restrictions. The study finds, first, that the structure of the Dominican Republic's yield curve can be successfully reduced to a limited set of factors that capture the intertemporal structure of spot yields that discounts each bond's future cashflows so that they correspond to its current trading price; second, the study finds that a joint macro-financial VAR framework increases forecasting power relative to separate macro and financial models, and that further theoretical and pragmatic restrictions can be made on the coefficients to augment the flexibility of the model without compromising model fit.
Autorentext
Enrique Penson received Bachelor's degree in Economics, Summa Cum Laude at Instituto Tecnológico de Santo Domingo; obtained Master's degree in Investment and Finance from Middlesex University, London, with distinction. Currently he is a Senior Economist at the Analytica firm in the Dominican Republic, and has been a consultant at the World Bank.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber Editorial Académica Española
- Gewicht 96g
- Untertitel A macro-financial VAR approach to forecasting the Dominican Republic's Central Government's Yield Curve
- Autor Enrique Penson
- Titel Forecasting the Government's Yield Curve in the Dominican Republic
- Veröffentlichung 21.06.2019
- ISBN 6139469201
- Format Kartonierter Einband
- EAN 9786139469208
- Jahr 2019
- Größe H220mm x B150mm x T4mm
- Anzahl Seiten 52
- GTIN 09786139469208