Forgery Image Detection Using Machine Learning Algorithms

CHF 75.45
Auf Lager
SKU
SJ15JP36PAA
Stock 1 Verfügbar
Geliefert zwischen Mi., 11.02.2026 und Do., 12.02.2026

Details

Several machine learning algorithms have been contributed to this thesis to overcome a forgery image issue and some appropriate datasets have played a vital role to provide good outcomes. In the first chapter of this thesis, a brief overview of the literature reviews, the structure of the thesis, the research questions, and aims are going to be presented. The main objective behind writing this thesis is to examine a number of machine learning algorithms and assess their performance on suitable datasets that serve the main goal of the thesis. In order to examine these datasets to fulfill the objective, we will have to use one of the programming languages such as Python which is very suitable for the purpose of the thesis as it has a number of libraries that make it easy to implement and examine.

Autorentext

Ahmed Gazali MounirouI graduated from the Sultanate of Oman with a Bachelor s degree in Information Security where I studied during the period 2015-2020.I have also graduated Bake Engineering University with a master s degree in Information Security and System Engineering where I studied during the period 2021-2023.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786206783237
    • Anzahl Seiten 104
    • Genre Software
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 173g
    • Untertitel DE
    • Größe H220mm x B150mm x T7mm
    • Jahr 2023
    • EAN 9786206783237
    • Format Kartonierter Einband
    • ISBN 6206783235
    • Veröffentlichung 11.09.2023
    • Titel Forgery Image Detection Using Machine Learning Algorithms
    • Autor Ahmed Gazali Mounirou

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38