Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Foundations and Advances in Data Mining
Details
With the growing use of information technology and the recent advances in web systems, the amount of data available to users has increased exponentially. Thus, there is a critical need to understand the content of the data. As a result, data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. In this carefully edited volume a theoretical foundation as well as important new directions for data-mining research are presented. It brings together a set of well respected data mining theoreticians and researchers with practical data mining experiences. The presented theories will give data mining practitioners a scientific perspective in data mining and thus provide more insight into their problems, and the provided new data mining topics can be expected to stimulate further research in these important directions.
Brings together well respected data mining theoreticians and researchers with practical data mining experiences Presents a theoretical foundation Presents important new directions for data-mining research Includes supplementary material: sn.pub/extras
Inhalt
The Mathematics of Learning.- Logical Regression Analysis: From Mathematical Formulas to Linguistic Rules.- A Feature/Attribute Theory for Association Mining and Constructing the Complete Feature Set.- A New Theoretical Framework for K-means-type Clustering.- Clustering via Decision Tree Construction.- Incremental Mining on Association Rules.- Mining Association Rules from Tabular Data Guided by Maximal Frequent Itemsets.- Sequential Pattern Mining by Pattern-Growth: Principles and Extensions.- Web Page Classification.- Web Mining Concepts, Applications, and Research Directions.- Privacy-Preserving Data Mining.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642425387
- Editor Tsau Young Lin, Wesley Chu
- Sprache Englisch
- Auflage 2005
- Größe H235mm x B155mm x T20mm
- Jahr 2014
- EAN 9783642425387
- Format Kartonierter Einband
- ISBN 3642425380
- Veröffentlichung 16.11.2014
- Titel Foundations and Advances in Data Mining
- Untertitel Studies in Fuzziness and Soft Computing 180
- Gewicht 534g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 352
- Lesemotiv Verstehen
- Genre Informatik