Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Fractal Geometry and Stochastics VI
Details
This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry.
Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation.
Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.
Inhalt
Contributions by: Erik Akkermans.- Mario Bonk.- David Croydon.- Jonathan Fraser.- Masanori Hino.- Remco van der Hofstad.- Peter Kern.- Jason Miller.- Stephane Seuret.- Nageswari Shanmugalingam.- Gwyneth Stallard.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030596484
- Editor Uta Freiberg, Steffen Winter, Michael Hinz, Ben Hambly
- Sprache Englisch
- Auflage 1st edition 2021
- Größe H241mm x B160mm x T23mm
- Jahr 2021
- EAN 9783030596484
- Format Fester Einband
- ISBN 3030596486
- Veröffentlichung 24.03.2021
- Titel Fractal Geometry and Stochastics VI
- Untertitel Progress in Probability 76
- Gewicht 647g
- Herausgeber Springer International Publishing
- Anzahl Seiten 320
- Lesemotiv Verstehen
- Genre Mathematik