Free Boundary Problems in PDEs and Particle Systems

CHF 67.15
Auf Lager
SKU
DK6VE7D872L
Stock 1 Verfügbar
Geliefert zwischen Mi., 12.11.2025 und Do., 13.11.2025

Details

In this volume a theory for models of transport in the presence of a free boundary is developed.Macroscopic laws of transport are described by PDE's. When the system is open, there are several mechanisms to couple the system with the external forces. Here a class of systems where the interaction with the exterior takes place in correspondence of a free boundary is considered. Both continuous and discrete models sharing the same structure are analysed. In Part I a free boundary problem related to the Stefan Problem is worked out in all details. For this model a new notion of relaxed solution is proposed for which global existence and uniqueness is proven. It is also shown that this is the hydrodynamic limit of the empirical mass density of the associated particle system. In Part II several other models are discussed. The expectation is that the results proved for the basic model extend to these other cases.All the models discussed in this volume have an interest in problems arising in several research fields such as heat conduction, queuing theory, propagation of fire, interface dynamics, population dynamics, evolution of biological systems with selection mechanisms.In general researchers interested in the relations between PDE's and stochastic processes can find in this volume an extension of this correspondence to modern mathematical physics.

Includes supplementary material: sn.pub/extras

Inhalt
Introduction.- Part I The basic model.- Introduction to Part I.- The basic model, definitions and results.- Regularity properties of the barriers.- Lipschitz and L1 estimates.- Mass transport inequalities.- The limit theorems on barriers.- Brownian motion and the heat equation.- Existence of optimal sequences.- Proof of the main theorem.- The basic particle model and its hydrodynamic limit.- Part II Variants of the basic model.- Introduction to Part II.- Independent walkers with current reservoirs.- Beyond diffusive scaling.- Other models.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319333694
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2016
    • Anzahl Seiten 120
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T7mm
    • Jahr 2016
    • EAN 9783319333694
    • Format Kartonierter Einband
    • ISBN 3319333690
    • Veröffentlichung 29.06.2016
    • Titel Free Boundary Problems in PDEs and Particle Systems
    • Autor Gioia Carinci , Errico Presutti , Cristian Giardina , Anna De Masi
    • Untertitel SpringerBriefs in Mathematical Physics 12
    • Gewicht 195g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470