Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Functional Analysis and Applied Optimization in Banach Spaces
Details
This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.
Introduces the basic concepts of real and functional analysis Contains introductory and advanced concepts in measure and integration Applications will be of interest to applied mathematicians, physicists, and engineers Includes supplementary material: sn.pub/extras
Inhalt
- Topological Vector Spaces.- 2. The Hahn-Bananch Theorems and Weak Topologies.- 3. Topics on Linear Operators.- 4. Basic Results on Measure and Integration.- 5. The Lebesgue Measure in Rn.- 6. Other Topics in Measure and Integration.- 7. Distributions.- 8. The Lebesque and Sobolev Spaces.- 9. Basic Concepts on the Calculus of Variations.- 10. Basic Concepts on Convex Analysis.- 11. Constrained Variational Analysis.- 12. Duality Applied to Elasticity.- 13. Duality Applied to a Plate Model.- 14. About Ginzburg-Landau Type Equations: The Simpler Real Case.- 15. Full Complex Ginzburg-Landau System.- 16. More on Duality and Computation in the Ginzburg-Landau System.- 17. On Duality Principles for Scalar and Vectorial Multi-Well Variational Problems.- 18. More on Duality Principles for Multi-Well Problems.- 19. Duality and Computation for Quantum Mechanics Models.- 20. Duality Applied to the Optimal Design in Elasticity.- 21. Duality Applied to Micro-magnetism.- 22. The Generalized Method of Lines Applied to Fluid Mechanics.- 23. Duality Applied to the Optimal Control and Optimal Design of a Beam Model.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319060736
- Sprache Englisch
- Auflage 2014
- Größe H241mm x B160mm x T37mm
- Jahr 2014
- EAN 9783319060736
- Format Fester Einband
- ISBN 3319060732
- Veröffentlichung 03.07.2014
- Titel Functional Analysis and Applied Optimization in Banach Spaces
- Autor Fabio Botelho
- Untertitel Applications to Non-Convex Variational Models
- Gewicht 1027g
- Herausgeber Springer International Publishing
- Anzahl Seiten 580
- Lesemotiv Verstehen
- Genre Mathematik