Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Fundamentals of Machine Learning Algorithms
Details
In machine learning, models and algorithms can learn from data and make predictions or judgments without explicit programming are developed. Machine learning is a subfield of artificial intelligence (AI). Machine learning uses a wide range of important algorithms and techniques. A list of machine learning algorithms is shown below: Support Vector Machine Algorithm, Decision Tree Classification Algorithm, Random Forest Algorithm, Logistic Regression Algorithm, Linear Regression Algorithm, K-Nearest Neighbor (KNN) Algorithm, Naïve Bayes Classifier Algorithm, K-Means Clustering Algorithm, XG-Boost Algorithm. These algorithms are employed in many different areas, such as robotics, marketing, healthcare, and finance, and they form the foundation of machine learning. The choice of algorithm is influenced by the nature of the problem, the characteristics of the data, and the available computing capacity.
Autorentext
Mrs. M.G.CHITRA received her M.Phil. degree in Computer Science in 2011 from Auxilium College of Arts and Science for Women's, Vellore, Tamil Nadu, India. She has 10 years of Teaching Experience. She has Published more than 5 National and International Conference & Journals and registered one Patent.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786207483556
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 60
- Genre IT Encyclopedias
- Gewicht 107g
- Untertitel DE
- Größe H220mm x B150mm x T4mm
- Jahr 2024
- EAN 9786207483556
- Format Kartonierter Einband
- ISBN 6207483553
- Veröffentlichung 09.04.2024
- Titel Fundamentals of Machine Learning Algorithms
- Autor Mrs M. G. Chitra , Ramya Govindaraj
- Sprache Englisch