Fuzzy Approach to Hierarchical Clustering

CHF 57.55
Auf Lager
SKU
CN547LELB5H
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

In this book we tried to extend the possibilities of hierarchical clustering methods to manipulate with fuzzy data both during preparing and clustering of data.The main aim was to apply some results of fuzzy sets theory and to develop new elements of hierarchical agglomerative clustering alforithms especially focused on manipulating with fuzzy data. The main goal consisted of the following parts - to prepare the fuzzy data for cluster analysis, to extend the definition of object dissimilarity for the case of fuzzy objects; to realize clustering of fuzzy data, to search of Tolerance coefficient for Definite hierarchical agglomerative clustering method and to find Partition optimality coefficient by means of fuzzy c-means algorithm.

Autorentext

Martin Mal ík - Vice-dean of the Pedagogical Faculty, works atthe Department of Education and Adult Education, PedagogicalFaculty, University of Ostrava. In terms of the research hefocuses on the problems of school evaluation with a focus onelectronic testing and educational technologies in relation tothe development of human resources.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783843388641
    • Sprache Englisch
    • Größe H220mm x B150mm x T8mm
    • Jahr 2011
    • EAN 9783843388641
    • Format Kartonierter Einband
    • ISBN 3843388644
    • Veröffentlichung 20.04.2011
    • Titel Fuzzy Approach to Hierarchical Clustering
    • Autor Martin Malcik
    • Untertitel Fuzzy dissimilarity of educational fuzzy objects
    • Gewicht 197g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 120
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470