Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Fuzzy Reinforcement Learning Based Controller Design
Details
This book aims at providing basic introduction about reinforcement learning (RL), application of RL as controller and introducing stability in RL. Q-learning is most widely used RL technique and is explained in detail in this book. In RL, "Curse of Dimensionality" is a major issue and author has used fuzzy inference system to handle this problem resulting in Fuzzy Q learning. Reinforcement learning works on exploitation and exploration policy and hence RL based controller may face stability issue. The main emphasis of this book is to introduce stability in RL based controller using Lyapunov theory. The proposed RL based controllers are simulated on various nonlinear systems including Inverted Pendulum and Robotic Manipulator.
Autorentext
Abhishek Kumar é um autor técnico emergente. As suas principais áreas de investigação incluem a IoT, a aprendizagem automática e a computação em nuvem. Recebeu o prémio "Technical Genius Award" da Associação de Engenheiros e Técnicos Informáticos. Como investigador associado de um projeto financiado pelo DRDO, co-inventou o KGSAN (uma estrutura IoT premiada pelo Yahoo R&D).
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 102g
- Untertitel Lyapunov Theory based Reinforcement Learning Controller for Non Linear Systems
- Autor Abhishek Kumar
- Titel Fuzzy Reinforcement Learning Based Controller Design
- Veröffentlichung 29.12.2021
- ISBN 6204732013
- Format Kartonierter Einband
- EAN 9786204732015
- Jahr 2021
- Größe H220mm x B150mm x T4mm
- Anzahl Seiten 56
- GTIN 09786204732015