Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Gâteaux Derivative
CHF 56.40
Auf Lager
SKU
AE6BGMEHGDF
Geliefert zwischen Fr., 06.02.2026 und Mo., 09.02.2026
Details
In mathematics, the Gâteaux differential or Gâteaux derivative is a generalisation of the concept of directional derivative in differential calculus. Named after René Gâteaux, a French mathematician who died young in World War I, it is defined for functions between locally convex topological vector spaces such as Banach spaces. Like the Fréchet derivative on a Banach space, the Gâteaux differential is often used to formalize the functional derivative commonly used in the calculus of variations and physics. Unlike other forms of derivatives, the Gâteaux differential of a function may be nonlinear. However, often the definition of the Gâteaux differential also requires that it be a continuous linear transformation. Some authors, such as Tikhomirov (2001), draw a further distinction between the Gâteaux differential (which may be nonlinear) and the Gâteaux derivative (which they take to be linear). In most applications, continuous linearity follows from some more primitive condition which is natural to the particular setting, such as imposing complex differentiability in the context of infinite dimensional holomorphy or continuous differentiability in nonlinear analysis.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130299774
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B150mm x T8mm
- Jahr 2010
- EAN 9786130299774
- Format Fachbuch
- ISBN 978-613-0-29977-4
- Titel Gâteaux Derivative
- Untertitel Directional derivative, Differential calculus, World War I, Locally convex topological vector space, Topological vector space, Banach space, Fréchet derivative, Functional derivative
- Gewicht 213g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 132
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung