Generalizations of Thomae's Formula for Zn Curves

CHF 166.35
Auf Lager
SKU
GHQATJGF51N
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

This book provides a comprehensive overview of the theory of theta functions, and the necessary background for understanding and proving the Thomae formulae and their relationship to the Zn curves.
The book is intended for graduate students in mathematics studying complex analysis, algebraic geometry, and number theory as well as mathematical physicists and physicists studying conformal field theory.

Previous publications on the generalization of the Thomae formulae to Zn curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces.

"Generalizations of Thomae's Formula for Zn Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory.

This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory.


The first monograph to study generalizations of the Thomae Formulae to Zn curves Provides an introduction to the basic principles of compact Riemann surfaces, theta functions, algebraic curves, and branch points Examples support the theory and reveal the broad applicability of this theory to numerous other disciplines including conformal field theory, low dimensional topology, the theory of special functions

Inhalt

  • Introduction.- 1. Riemann Surfaces.- 2. Zn Curves.- 3. Examples of Thomae Formulae.- 4. Thomae Formulae for Nonsingular Zn Curves.- 5. Thomae Formulae for Singular Zn Curves.-6. Some More Singular Zn Curves.-Appendix A. Constructions and Generalizations for the Nonsingular and Singular Cases.-Appendix B. The Construction and Basepoint Change Formulae for the Symmetric Equation Case.-References.-List of Symbols.-Index.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 372
    • Herausgeber Springer New York
    • Gewicht 563g
    • Untertitel Developments in Mathematics 21
    • Autor Shaul Zemel , Hershel M. Farkas
    • Titel Generalizations of Thomae's Formula for Zn Curves
    • Veröffentlichung 27.12.2012
    • ISBN 1461427584
    • Format Kartonierter Einband
    • EAN 9781461427582
    • Jahr 2012
    • Größe H235mm x B155mm x T21mm
    • Lesemotiv Verstehen
    • Auflage 2011
    • GTIN 09781461427582

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38