Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Generalized polynomials and associated semigroups
Details
In this work we construct and study families of generalized orthogonal polynomials with hermitian matrix argument associated to a family of orthogonal polynomials on R. Different normalizations for these polynomials are considered and we obtain some classical formulas for orthogonal polynomials from the corresponding formulas for the one-dimensional polynomials. We also construct semigroups of operators associated to the generalized orthogonal polynomials and we give an expression of the infinitesimal generator of this semigroup and, in the classical cases, we prove that this semigroup is also Markov. For d-dimensional Jacobi expansions we study the notions of fractional integral (Riesz potentials), Bessel potentials and fractional derivatives. We present a novel decomposition of the L2 space associated with the d-dimensional Jacobi measure and obtain an analogous of Meyer's multiplier theorem in this setting. Sobolev Jacobi spaces are also studied.
Autorentext
Cristina Balderrama is a mathematician graduated from theUniversidad Central de Venezuela in 2002 and she got her PhD inMathematics from the Universidad Central de Venezuela in 2008 andfrom the Université d'Angers in 2009. She is currently working at the mathematics department of the Universidad Central de Venezuela.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131523786
- Sprache Englisch
- Größe H220mm x B150mm x T8mm
- Jahr 2010
- EAN 9786131523786
- Format Kartonierter Einband
- ISBN 6131523789
- Veröffentlichung 31.10.2010
- Titel Generalized polynomials and associated semigroups
- Autor Cristina Balderrama
- Untertitel Generalized orthogonal polynomials with Hermitian matrix argument and associated semigroups
- Gewicht 197g
- Herausgeber Éditions universitaires européennes
- Anzahl Seiten 120
- Genre Mathematik