Genetic Programming for Image Classification

CHF 201.85
Auf Lager
SKU
IK2URNT3S7H
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

This book offers several new GP approaches to feature learning for image classification. Image classification is an important task in computer vision and machine learning with a wide range of applications. Feature learning is a fundamental step in image classification, but it is difficult due to the high variations of images. Genetic Programming (GP) is an evolutionary computation technique that can automatically evolve computer programs to solve any given problem. This is an important research field of GP and image classification. No book has been published in this field. This book shows how different techniques, e.g., image operators, ensembles, and surrogate, are proposed and employed to improve the accuracy and/or computational efficiency of GP for image classification. The proposed methods are applied to many different image classification tasks, and the effectiveness and interpretability of the learned models will be demonstrated. This book is suitable as a graduate andpostgraduate level textbook in artificial intelligence, machine learning, computer vision, and evolutionary computation.

Introduces a series of typical Genetic Programming-based approaches to feature learning in image classification Provides broad perceptive insights on what and how Genetic Programming can offer and shows a comprehensive and systematic research route in this field Presents solutions or different approaches (theoretical treatments) to solve real-world problems of image classification Discusses the use of different techniques in Genetic Programming to improve the generalization performance and/or computational efficiency for image classification

Inhalt
Computer Vision and Machine Learning.- Evolutionary Computation and Genetic Programming.- Multi-Layer Representation for Binary Image Classification.- Evolutionary Deep Learning Using GP with Convolution Operators.- GP with Image Descriptors for Learning Global and Local Features.- GP with Image-Related Operators for Feature Learning.- GP for Simultaneous Feature Learning and Ensemble Learning.- Random Forest-Assisted GP for Feature Learning.- Conclusions and Future Directions.<p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030659264
    • Auflage 1st edition 2021
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T22mm
    • Jahr 2021
    • EAN 9783030659264
    • Format Fester Einband
    • ISBN 3030659267
    • Veröffentlichung 09.02.2021
    • Titel Genetic Programming for Image Classification
    • Autor Ying Bi , Mengjie Zhang , Bing Xue
    • Untertitel An Automated Approach to Feature Learning
    • Gewicht 600g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 288

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38