Genetic Programming for Image Classification

CHF 165.55
Auf Lager
SKU
POO0GI7OL94
Stock 1 Verfügbar
Geliefert zwischen Mi., 25.02.2026 und Do., 26.02.2026

Details

This book offers several new GP approaches to feature learning for image classification. Image classification is an important task in computer vision and machine learning with a wide range of applications. Feature learning is a fundamental step in image classification, but it is difficult due to the high variations of images. Genetic Programming (GP) is an evolutionary computation technique that can automatically evolve computer programs to solve any given problem. This is an important research field of GP and image classification. No book has been published in this field. This book shows how different techniques, e.g., image operators, ensembles, and surrogate, are proposed and employed to improve the accuracy and/or computational efficiency of GP for image classification. The proposed methods are applied to many different image classification tasks, and the effectiveness and interpretability of the learned models will be demonstrated. This book is suitable as a graduate andpostgraduate level textbook in artificial intelligence, machine learning, computer vision, and evolutionary computation.

Introduces a series of typical Genetic Programming-based approaches to feature learning in image classification Provides broad perceptive insights on what and how Genetic Programming can offer and shows a comprehensive and systematic research route in this field Presents solutions or different approaches (theoretical treatments) to solve real-world problems of image classification Discusses the use of different techniques in Genetic Programming to improve the generalization performance and/or computational efficiency for image classification

Inhalt
Computer Vision and Machine Learning.- Evolutionary Computation and Genetic Programming.- Multi-Layer Representation for Binary Image Classification.- Evolutionary Deep Learning Using GP with Convolution Operators.- GP with Image Descriptors for Learning Global and Local Features.- GP with Image-Related Operators for Feature Learning.- GP for Simultaneous Feature Learning and Ensemble Learning.- Random Forest-Assisted GP for Feature Learning.- Conclusions and Future Directions. <p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030659295
    • Genre Technology Encyclopedias
    • Auflage 1st edition 2021
    • Lesemotiv Verstehen
    • Anzahl Seiten 288
    • Herausgeber Springer
    • Größe H235mm x B155mm x T16mm
    • Jahr 2022
    • EAN 9783030659295
    • Format Kartonierter Einband
    • ISBN 3030659291
    • Veröffentlichung 10.02.2022
    • Titel Genetic Programming for Image Classification
    • Autor Ying Bi , Bing Xue , Mengjie Zhang
    • Untertitel An Automated Approach to Feature Learning
    • Gewicht 441g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38