Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Genetic Programming Theory and Practice XIII
Details
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: multi-objective genetic programming, learning heuristics, Kaizen programming, Evolution of Everything (EvE), lexicase selection, behavioral program synthesis, symbolic regression with noisy training data, graph databases, and multidimensional clustering. It also covers several chapters on best practices and lesson learned from hands-on experience. Additional application areas include financial operations, genetic analysis, and predicting product choice. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Provides papers describing cutting-edge work on the theory and applications of genetic programming (GP) Offers large-scale, real-world applications of GP to a variety of problem domains, including financial applications, genetic analysis, product selection Theoretical exploration of controlled semantic, lexicase and other selection and crossover methods, and understanding convergence Includes supplementary material: sn.pub/extras
Inhalt
Evolving Simple Symbolic Regression Models by Multi-objective Genetic Programming.- Learning Heuristics for Mining RNA Sequence-Structure Motifs.- Kaizen Programming for Feature Construction for Classification.- GP as if You Meant It: An Exercise for Mindful Practice.- nPool: Massively Distributed Simultaneous Evolution and Cross-Validation in EC-Star.- Highly Accurate Symbolic Regression with Noisy Training Data.- Using Genetic Programming for Data Science: Lessons Learned.- The Evolution of Everything (EvE) and Genetic Programming.- Lexicase selection for program synthesis: a Diversity Analysis.- Using Graph Databases to Explore the Dynamics of Genetic Programming Runs.- Predicting Product Choice with Symbolic Regression and Classification.- Multiclass Classification Through Multidimensional Clustering.- Prime-Time: Symbolic Regression takes its place in the Real World.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319817064
- Editor Rick Riolo, Arthur Kordon, Mark Kotanchek, W. P. Worzel
- Sprache Englisch
- Auflage Softcover reprint of the original 1st edition 2016
- Größe H235mm x B155mm x T16mm
- Jahr 2018
- EAN 9783319817064
- Format Kartonierter Einband
- ISBN 331981706X
- Veröffentlichung 07.07.2018
- Titel Genetic Programming Theory and Practice XIII
- Untertitel Genetic and Evolutionary Computation
- Gewicht 435g
- Herausgeber Springer International Publishing
- Anzahl Seiten 284
- Lesemotiv Verstehen
- Genre Informatik