Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Genetic Programming Theory and Practice XIX
Details
This book brings together some of the most impactful researchers in the field of Genetic Programming (GP), each one working on unique and interesting intersections of theoretical development and practical applications of this evolutionary-based machine learning paradigm. Topics of particular interest for this year´s book include powerful modeling techniques through GP-based symbolic regression, novel selection mechanisms that help guide the evolutionary process, modular approaches to GP, and applications in cybersecurity, biomedicine and program synthesis, as well as papers by practitioner of GP that focus on usability and real-world results. In summary, readers will get a glimpse of the current state of the art in GP research.
Provides a unique combination of theoretical contributions and state-of-the-art real-world problem Explores the intersection of genetic programming and evolutionary computation in general Discusses recent results in methodological improvements to genetic programming
Inhalt
Chapter 1. Symbolic Regression in Materials Science: Discovering Interatomic Potentials from Data.- Chapter 2. Correlation versus RMSE Loss Functions in Symbolic Regression Tasks.- Chapter 3. GUI-Based, Efficient Genetic Programming and AI Planning For Unity3D.- Chapter 4. Genetic Programming for Interpretable and Explainable Machine Learning.- Chapter 5. Biological Strategies ParetoGP Enables Analysis of Wide and Ill-Conditioned Data from Nonlinear Systems.- Chapter 6. GP-Based Generative Adversarial Models.- Chapter 7. Modelling Hierarchical Architectures with Genetic Programming and Neuroscience Knowledge for Image Classification through InferentialKnowledge.- Chapter 8. Life as a Cyber-Bio-Physical System.- Chapter 9. STREAMLINE: A Simple, Transparent, End-To-End Automated Machine Learning Pipeline Facilitating Data Analysis and Algorithm Comparison.- Chapter 10. Evolving Complexity is Hard.- Chapter 11. ESSAY: Computers Are Useless ... They Only Give Us Answers.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811984624
- Genre Information Technology
- Editor Leonardo Trujillo, Stephan M. Winkler, Sara Silva, Wolfgang Banzhaf
- Lesemotiv Verstehen
- Anzahl Seiten 276
- Größe H235mm x B155mm x T16mm
- Jahr 2024
- EAN 9789811984624
- Format Kartonierter Einband
- ISBN 981198462X
- Veröffentlichung 13.03.2024
- Titel Genetic Programming Theory and Practice XIX
- Untertitel Genetic and Evolutionary Computation
- Gewicht 423g
- Herausgeber Springer
- Sprache Englisch