Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Genetic Programming Theory and Practice XVIII
Details
This book, written by the foremost international researchers and practitioners of genetic programming (GP), explores the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. In this year's edition, the topics covered include many of the most important issues and research questions in the eld, such as opportune application domains for GP-based methods, game playing and co-evolutionary search, symbolic regression and efcient learning strategies, encodings and representations for GP, schema theorems, and new selection mechanisms. The book includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Provides papers describing cutting-edge work on the theory and applications of genetic programming (GP) Offers large-scale, real-world applications (big data) of GP to a variety of problem domains Presents theoretical exploration of exploration, lexicase, and other selection
Autorentext
Wolfgang Banzhaf is a professor in the Department of Computer Science and Engineering at Michigan State University.
Inhalt
Chapter 1. Finding Simple Solutions to Multi-Task Visual Reinforcement Learning Problems with Tangled Program Graphs.- Chapter 2. Grammar-based Vectorial Genetic Programming for Symbolic Regression.- Chapter 3. Grammatical Evolution Mapping for Semantically-Constrained Genetic Programming.- Chapter 4. What can phylogenetic metrics tell us about useful diversity in evolutionary algorithms?.- Chapter 5. An Exploration of Exploration: Measuring the ability of lexicaseselection to find obscure pathways to optimality.- Chapter 6. Feature Discovery with Deep Learning Algebra Networks.- Chapter 7. Back To The Future Revisiting OrdinalGP & Trustable Models After a Decade.- Chapter 8. Fitness First.- Chapter 9. Designing Multiple ANNs with Evolutionary Development: Activity Dependence.- Chapter 10. Evolving and Analyzing modularity with GLEAM (Genetic Learning by Extraction and Absorption of Modules).- Chapter 11. Evolution of the Semiconductor Industry, and the Start of X Law.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811681127
- Genre Information Technology
- Auflage 1st edition 2022
- Editor Wolfgang Banzhaf, Bill Worzel, Stephan Winkler, Leonardo Trujillo
- Lesemotiv Verstehen
- Anzahl Seiten 228
- Größe H241mm x B160mm x T18mm
- Jahr 2022
- EAN 9789811681127
- Format Fester Einband
- ISBN 9811681120
- Veröffentlichung 12.02.2022
- Titel Genetic Programming Theory and Practice XVIII
- Untertitel Genetic and Evolutionary Computation
- Gewicht 512g
- Herausgeber Springer Nature Singapore
- Sprache Englisch