Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Geometric Harmonic Analysis IV
Details
This monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. The text is intended for researchers, graduate students, and industry professionals interested in applications of harmonic analysis and geometric measure theory to complex analysis, scattering, and partial differential equations.
Traditionally, the label Calderón-Zygmund theory has been applied to a distinguished body of works primarily pertaining to the mapping properties of singular integral operators on Lebesgue spaces, in various geometric settings. Volume IV amounts to a versatile Calderón-Zygmund theory for singular integral operators of layer potential type in open sets with uniformly rectifiable boundaries, considered on a diverse range of function spaces. Novel applications to complex analysis in several variables are also explored here.
Current theory of layer potentials for elliptic systems in optimal settings for a wealth of function spaces Detailed account of relevant boundary layer operators for Stokes' system of hydrostatics in optimal settings Blurs the boundaries between geometric measure theory, several complex variables, and Calderón-Zygmund theory
Inhalt
Introduction and Statement of Main Results Concerning the Divergence Theorem.- Examples, Counterexamples, and Additional Perspectives.- Tools from Geometric Measure Theory, Harmonic Analysis, and functional Analysis.- Open Sets with Locally Finite Surface Measures and Boundary Behavior.- Proofs of the Main Results Pertaining to the Divergence Theorem.- Applications to Singular Integrals, Function Spaces, Boundary Problems, and Further Results.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031291814
- Lesemotiv Verstehen
- Genre Maths
- Auflage 2023
- Anzahl Seiten 1012
- Herausgeber Springer Nature Switzerland
- Größe H235mm x B155mm x T54mm
- Jahr 2024
- EAN 9783031291814
- Format Kartonierter Einband
- ISBN 3031291816
- Veröffentlichung 10.07.2024
- Titel Geometric Harmonic Analysis IV
- Autor Dorina Mitrea , Marius Mitrea , Irina Mitrea
- Untertitel Boundary Layer Potentials in Uniformly Rectifiable Domains, and Applications to Complex Analysis
- Gewicht 1498g
- Sprache Englisch