Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Geospatial Image Retrieval
Details
We are witnessing a large increase in satellite generated data especially in the form of images. Hence intelligent processing of the huge amount of data received by dozens of earth observing satellites, with specific satellite image oriented approaches, presents itself as a pressing need. Content based satellite image retrieval (CBSIR) approaches have mainly been driven so far by approaches dealing with traditional images. In this paper we introduce a novel approach that refines image retrieval process using the unique properties to satellite images. Our approach uses a Query by polygon (QBP) paradigm for the content of interest instead of using the more conventional rectangular query by image approach. First, we extract features from the satellite images using multiple tiling sizes. Accordingly the system uses these multilevel features within a multilevel retrieval system that refines the retrieval process. Our multilevel refinement approach has been experimentally validated against the conventional one yielding enhanced precision and recall rates.
Autorentext
Noureldin Laban received the B. Sc. and M. Sc. degrees in Information Technology from Faculty of Computers and Information, Cairo University, 2004 and 2013 respectively. He is currently an Assistant Researcher in the Dept. Digital Image Processing and its Applications,National Authority for Remote Sensing and Space Sciences.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659527142
- Sprache Englisch
- Größe H220mm x B150mm x T9mm
- Jahr 2014
- EAN 9783659527142
- Format Kartonierter Einband
- ISBN 3659527149
- Veröffentlichung 01.04.2014
- Titel Geospatial Image Retrieval
- Autor Noureldin Laban
- Untertitel Proposed System For Content Based Satellite Image Retrieval
- Gewicht 209g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 128
- Genre Informatik