Gesture Recognition

CHF 190.35
Auf Lager
SKU
HTOUL5MBDS5
Stock 1 Verfügbar
Geliefert zwischen Do., 18.12.2025 und Fr., 19.12.2025

Details

This book presents a selection of chapters, written by leading international researchers, related to the automatic analysis of gestures from still images and multi-modal RGB-Depth image sequences. It offers a comprehensive review of vision-based approaches for supervised gesture recognition methods that have been validated by various challenges. Several aspects of gesture recognition are reviewed, including data acquisition from different sources, feature extraction, learning, and recognition of gestures.


Gives readers a comprehensive analysis on gesture recognition, defining a new taxonomy for the field Focusses on supervised machine learning methods for gesture recognition Presents an open-source C++ library for real-time gesture recognition Reviews recent research involving deep learning architectures in order to deal with gesture and action recognition problems Includes supplementary material: sn.pub/extras Includes supplementary material: sn.pub/extras

Inhalt
Preface.- Chapter 1.- Chapter 2.- Chapter 3.- Chapter 4.- Chapter 5.<p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319570204
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 592
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage 1st edition 2017
    • Editor Sergio Escalera, Vassilis Athitsos, Isabelle Guyon
    • Sprache Englisch
    • Gewicht 1045g
    • Untertitel The Springer Series on Challenges in Machine Learning
    • Größe H241mm x B160mm x T38mm
    • Jahr 2017
    • EAN 9783319570204
    • Format Fester Einband
    • ISBN 331957020X
    • Veröffentlichung 31.07.2017
    • Titel Gesture Recognition

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470