Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators
Details
This book presents a comprehensive theory on glide-symmetric topological crystalline insulators. Beginning with developing a theory of topological phase transitions between a topological and trivial phase, it derives a formula for topological invariance in a glide-symmetric topological phase when inversion symmetry is added into a system. It also shows that the addition of inversion symmetry drastically simplifies the formula, providing insights into this topological phase, and proposes potential implementations. Lastly, based on the above results, the author establishes a way to design topological photonic crystals. Allowing readers to gain a comprehensive understanding of the glide-symmetric topological crystalline insulators, the book offers a way to produce such a topological phase in various physical systems, such as electronic and photonic systems, in the future.
Nominated as an outstanding Ph.D. thesis by the Tokyo Institute of Technology, Japan Summarizes independent theories (such as symmetry-based indicators and K-theory) in one table Offers design guidelines for topological materials and discussions on their use in photonic crystals
Inhalt
Introduction.- Topology, Symmetry, and Band Theory of Materials.- Weyl Semimetals and Spinless Z2 Magnetic Topological Crystalline Insulators with Glide Symmetry.- Interplay of Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators And Symmetry: Inversion Symmetry And Nonprimitive Lattice.- Topological Invariants And Tight-Binding Models From The Layer Constructions.- Conclusion and Outlook. <p
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811690761
- Lesemotiv Verstehen
- Genre Mechanical Engineering
- Auflage 1st edition 2022
- Sprache Englisch
- Anzahl Seiten 180
- Herausgeber Springer Nature Singapore
- Größe H241mm x B160mm x T16mm
- Jahr 2022
- EAN 9789811690761
- Format Fester Einband
- ISBN 9811690766
- Veröffentlichung 26.01.2022
- Titel Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators
- Autor Heejae Kim
- Untertitel Springer Theses
- Gewicht 442g