Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Guide to Distributed Algorithms
Details
The study of distributed algorithms provides the needed background in many real-life applications, such as: distributed real-time systems, wireless sensor networks, mobile ad hoc networks and distributed databases.
The main goal of Guide to Distributed Algorithms is to provide a detailed study of the design and analysis methods of distributed algorithms and to supply the implementations of most of the presented algorithms in Python language, which is the unique feature of the book not found in any other contemporary books on distributed computing.
Topics and features:
- Presents comprehensive design methods for distributed algorithms
- Provides detailed analysis for the algorithms presented
- Uses graph templates to demonstrate the working of algorithms
Provides working Python code for most of the algorithms presented
This unique textbook/study manual can serve as a comprehensive manual of distributed algorithms for Computer Science and non-CS majors as well as practitioners of distributed algorithms in research projects.Implementation using Python A survey of distributed algorithm design, analysis and implementation Numerous exercises, examples and definitions
Autorentext
Dr. Kayhan Erciyes is a full Professor in the Department of Computer Engineering at Yaar University, zmir, Türkiye. His other publications include the Springer titles Distributed Real-Time Systems, Guide to Graph Algorithms, Distributed and Sequential Algorithms for Bioinformatics, Discrete Mathematics and Graph Theory.
Inhalt
Part I: Background - 1. Introduction.- 2. Basic Concepts.- 3. Models.- Part II: Fundamental Algorithms.- 4. Time Management.- 5. Distributed Mutual Exclusion.- 6. Distributed Snapshots and Global States.- 7. Coordination.- 8. Fault Tolerance.- 9. Consensus and Agreement.- 10. Multicast Communication and Message Ordering.- 11. Distributed Transactions and Replication.- Part III: Distributed Graph Algorithms - 12. Trees and Traversals.- 13. Weighted Graphs.- 14. Graph Decomposition.- Part IV: Applications.- 15. Mobile Ad hoc Networks.- 16. Wireless Sensor Networks. 17. The Internet and the Internet of Things.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031790171
- Genre Information Technology
- Lesemotiv Verstehen
- Anzahl Seiten 298
- Größe H235mm x B155mm
- Jahr 2025
- EAN 9783031790171
- Format Kartonierter Einband
- ISBN 978-3-031-79017-1
- Veröffentlichung 23.04.2025
- Titel Guide to Distributed Algorithms
- Autor K. Erciyes
- Untertitel Design, Analysis and Implementation Using Python
- Herausgeber Springer Nature Switzerland
- Sprache Englisch