Haar Measure

CHF 43.15
Auf Lager
SKU
T0T86R0I99S
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

In mathematical analysis, the Haar measure is a way to assign an "invariant volume" to subsets of locally compact topological groups and subsequently define an integral for functions on those groups. This measure was introduced by Alfréd Haar, a Hungarian mathematician, in about 1932. Haar measures are used in many parts of analysis and number theory, and also in estimation theory.The Haar measures are used in harmonic analysis on arbitrary locally compact groups; see Pontryagin duality. A frequently used technique for proving the existence of a Haar measure on a locally compact group G is showing the existence of a left invariant Radon measure on G. In estimation theory, Haar measures can be used as non-informative priors, being Jeffreys priors for various questions. For instance, translation invariance of the (improper) uniform distribution on the real numbers (the Haar measure with respect to addition) corresponds to no information about location, and thus it is the Jeffreys prior for the unknown mean of a Gaussian distribution, the mean being a measure of location.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131111426
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131111426
    • Format Fachbuch
    • Titel Haar Measure
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38