Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Hadoop Performance Modeling for LWLR
Details
Big Abstracts processing, as the advice comes from multiple, heterogeneous, free sources with circuitous and evolving relationships, and keeps growing. Big abstracts is difficult to plan with appliance a lot of relational database administration systems and desktop statistics and accommodation packages. The proposed shows a Big Abstracts processing model, from the abstracts mining perspective. This data-driven archetypal involves demand-driven accession of adevice sources, mining and analysis, user absorption modelling, and aegis and aloofness considerations. We assay the arduous issues in the data-driven archetypal and aswell in the Big abstracts revolution. We proposed a new allocation arrangement which can finer advance the allocation achievement in the bearings that training abstracts is available.
Autorentext
Komuravelli Mounika studied M.Tech in the Department of Computer Science, School of Information Technology, JNTUH, Hyderabad, Telangana.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786139946167
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H220mm x B150mm x T4mm
- Jahr 2020
- EAN 9786139946167
- Format Kartonierter Einband
- ISBN 6139946166
- Veröffentlichung 10.05.2020
- Titel Hadoop Performance Modeling for LWLR
- Autor Komuravelli Mounika , N. Naveen Kumar
- Gewicht 96g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 52