Hadwiger's Theorem

CHF 36.75
Auf Lager
SKU
4EAS8O28R7U
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In integral geometry (otherwise called geometric probability theory), Hadwiger''s theorem states that the space of "measures" (see below) defined on finite unions of compact convex sets in Rn consists of one "measure" that is "homogeneous of degree k" for each k = 0, 1, 2, ..., n, and linear combinations of those "measures". Here "measure" means a real-valued function m that is invariant under rigid motions (combinations of rotations and translations), finitely additive (if A and B are finite unions of compact convex sets then m(A B) = m(A) + m(B) m(A B), and m( ) = 0), and convex-continuous (its restriction to convex sets is continuous with respect to the Hausdorff metric). The countable additivity condition that is usually a part of the definition of measure is not required here.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131269165
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131269165
    • Format Fachbuch
    • Titel Hadwiger's Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 68
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38