Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Handbook of Nature-Inspired Optimization Algorithms: The State of the Art
Details
The introduction of nature-inspired optimization algorithms (NIOAs), over the past three decades, helped solve nonlinear, high-dimensional, and complex computational optimization problems. NIOAs have been originally developed to overcome the challenges of global optimization problems such as nonlinearity, non-convexity, non-continuity, non-differentiability, and/or multimodality which traditional numerical optimization techniques had difficulties solving. The main objective for this book is to make available a self-contained collection of modern research addressing the general bound-constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduate class on optimization, but will also be useful for interested senior students working on their research projects.
Explains the algorithms used, selected problems, and the implementation Focuses on solving single objective bound-constrained real parameter numerical optimization problems with NIOAs Provides practical examples, comparisons, and experimental results
Inhalt
Chaotic-SCA Salp Swarm Algorithm Enhanced with Opposition Based Learning: Application to Decrease Carbon Footprint in Patient Flow.- Design and Performance Evaluation of Objective Functions Based on Various Measures of Fuzzy Entropies for Image Segmentation using Grey Wolf Optimization.- Improved Artificial Bee Colony Algorithm with Adaptive Pursuit Based Strategy Selection.- Beetle Antennae Search Algorithm for the Motion Planning of Industrial Manipulator.- Solving Optimal Power Flow with Considering Placement of TCSC and FACTS Cost Using Cuckoo Search Algorithm.<p
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031075117
- Genre Technology Encyclopedias
- Auflage 1st edition 2022
- Editor Ali Mohamed, Ponnuthurai Nagaratnam Suganthan, Diego Oliva
- Lesemotiv Verstehen
- Anzahl Seiten 292
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T22mm
- Jahr 2022
- EAN 9783031075117
- Format Fester Einband
- ISBN 3031075110
- Veröffentlichung 01.09.2022
- Titel Handbook of Nature-Inspired Optimization Algorithms: The State of the Art
- Untertitel Volume I: Solving Single Objective Bound-Constrained Real-Parameter Numerical Optimization Problems
- Gewicht 606g
- Sprache Englisch