Handbook of Nature-Inspired Optimization Algorithms: The State of the Art

CHF 202.10
Auf Lager
SKU
E98A7KEBIS7
Stock 1 Verfügbar
Geliefert zwischen Fr., 26.12.2025 und Mo., 29.12.2025

Details

This book presents recent contributions and significant development, advanced issues, and challenges. In real-world problems and applications, most of the optimization problems involve different types of constraints. These problems are called constrained optimization problems (COPs). The optimization of the constrained optimization problems is considered a challenging task since the optimum solution(s) must be feasible. In their original design, evolutionary algorithms (EAs) are able to solve unconstrained optimization problems effectively. As a result, in the past decade, many researchers have developed a variety of constraint handling techniques, incorporated into (EAs) designs, to counter this deficiency.

The main objective for this book is to make available a self-contained collection of modern research addressing the general constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduateclass on optimization, but will also be useful for interested senior students working on their research projects.


Inhalt
Particle swarm optimization based optimization for in-dustry inspection.- Ant Algorithms: from Drawback Identification to Quality and Speed Improvement.- Fault location techniques based on traveling waves with application in the protection of distribution systems with renewable energy and particle swarm optimization.- Improved Particle Swarm Optimization and Non-Quadratic Penalty Method for Non-Linear Programming Problems with Equality Constraints.- Recent Trends in Face Recognition Using Metaheuristic Optimization.<p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031075186
    • Genre Technology Encyclopedias
    • Auflage 1st edition 2022
    • Editor Ali Wagdy Mohamed, Ponnuthurai Nagaratnam Suganthan, Diego Oliva
    • Lesemotiv Verstehen
    • Anzahl Seiten 224
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T13mm
    • Jahr 2023
    • EAN 9783031075186
    • Format Kartonierter Einband
    • ISBN 3031075188
    • Veröffentlichung 05.09.2023
    • Titel Handbook of Nature-Inspired Optimization Algorithms: The State of the Art
    • Untertitel Volume II: Solving Constrained Single Objective Real-Parameter Optimization Problems
    • Gewicht 347g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470