Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group

CHF 137.40
Auf Lager
SKU
7N01LL9NGOF
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

This highly topical book presents the first systematic and unified treatment of the theory of mean periodic functions on homogeneous spaces. The book contains most of the significant recent results in this area with complete and detailed proofs.

The theory of mean periodic functions is a subject which goes back to works of Littlewood, Delsarte, John and that has undergone a vigorous development in recent years. There has been much progress in a number of problems concerning local - pects of spectral analysis and spectral synthesis on homogeneous spaces. The study oftheseproblemsturnsouttobecloselyrelatedtoavarietyofquestionsinharmonic analysis, complex analysis, partial differential equations, integral geometry, appr- imation theory, and other branches of contemporary mathematics. The present book describes recent advances in this direction of research. Symmetric spaces and the Heisenberg group are an active ?eld of investigation at 2 the moment. The simplest examples of symmetric spaces, the classical 2-sphere S 2 and the hyperbolic plane H , play familiar roles in many areas in mathematics. The n Heisenberg groupH is a principal model for nilpotent groups, and results obtained n forH may suggest results that hold more generally for this important class of Lie groups. The purpose of this book is to develop harmonic analysis of mean periodic functions on the above spaces.

The approach employed in this book is the best suited for dealing with the subject in a systematic fashion. Most of the results are the best possible, giving answers to all questions that naturally arise in the topic and presenting the complete picture of corresponding phenomenon Some significant results are published here for the first time The proofs only involve concepts and facts which are indispensable to the essence of the subject There is no other book available that features the same treatment of symmetric spaces

Inhalt
Symmetric Spaces. Harmonic Analysis on Spheres.- General Considerations.- Analogues of the BeltramiKlein Model for Rank One Symmetric Spaces of Noncompact Type.- Realizations of Rank One Symmetric Spaces of Compact Type.- Realizations of the Irreducible Components of the Quasi-Regular Representation of Groups Transitive on Spheres. Invariant Subspaces.- Non-Euclidean Analogues of Plane Waves.- Transformations with Generalized Transmutation Property Associated with Eigenfunctions Expansions.- Preliminaries.- Some Special Functions.- Exponential Expansions.- Multidimensional Euclidean Case.- The Case of Symmetric Spaces X=G/K of Noncompact Type.- The Case of Compact Symmetric Spaces.- The Case of Phase Space.- Mean Periodicity.- Mean Periodic Functions on Subsets of the Real Line.- Mean Periodic Functions on Multidimensional Domains.- Mean Periodic Functions on G/K.- Mean Periodic Functions on Compact Symmetric Spaces of Rank One.- Mean Periodicity on Phase Space and the Heisenberg Group.- Local Aspects of Spectral Analysis and the Exponential Representation Problem.- A New Look at the Schwartz Theory.- Recent Developments in the Spectral Analysis Problem for Higher Dimensions.- ????(X) Spectral Analysis on Domains of Noncompact Symmetric Spaces of Arbitrary Rank.- Spherical Spectral Analysis on Subsets of Compact Symmetric Spaces.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781447122838
    • Sprache Englisch
    • Auflage 2009
    • Größe H235mm x B155mm x T37mm
    • Jahr 2011
    • EAN 9781447122838
    • Format Kartonierter Einband
    • ISBN 1447122836
    • Veröffentlichung 30.11.2011
    • Titel Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group
    • Autor Valery V. Volchkov , Vitaly V. Volchkov
    • Untertitel Springer Monographs in Mathematics
    • Gewicht 1019g
    • Herausgeber Springer
    • Anzahl Seiten 684
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38