Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Hasse Minkowski theorem
CHF 49.05
Auf Lager
SKU
B484SA9E7MH
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026
Details
High Quality Content by WIKIPEDIA articles! The Hasse Minkowski theorem is a fundamental result in number theory which states that two quadratic forms over a number field are equivalent if and only if they are equivalent locally at all places, i.e. equivalent over every completion of the field (which may be real, complex, or p-adic). A special case is that a quadratic space over a number field is isotropic if and only if it is isotropic locally everywhere, or equivalently, that a quadratic form over a number field nontrivially represents zero if and only if this holds for all completions of the field. The theorem was proved in the case of the field of rational numbers by Hermann Minkowski and generalized to number fields by Helmut Hasse. The same statement holds even more generally for all global fields.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131605475
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- EAN 9786131605475
- Format Fachbuch
- Titel Hasse Minkowski theorem
- Herausgeber Alphascript Publishing
- Anzahl Seiten 116
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung