Helly's Selection Theorem

CHF 43.15
Auf Lager
SKU
67ITQF1OPP2
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

In mathematics, Helly's selection theorem states that a sequence of functions that is locally of bounded total variation and uniformly bounded at a point has a convergent subsequence. In other words, it is a compactness theorem for the space BVloc. It is named for the Austrian mathematician Eduard Helly. The theorem has applications throughout mathematical analysis. In probability theory, the result implies compactness of a tight family of measures.In mathematical analysis, a function of bounded variation, also known as a BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131111433
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Größe H4mm x B220mm x T150mm
    • EAN 9786131111433
    • Format Fachbuch
    • Titel Helly's Selection Theorem
    • Gewicht 128g
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 84
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38