Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Helly's Selection Theorem
CHF 43.15
Auf Lager
SKU
67ITQF1OPP2
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
In mathematics, Helly's selection theorem states that a sequence of functions that is locally of bounded total variation and uniformly bounded at a point has a convergent subsequence. In other words, it is a compactness theorem for the space BVloc. It is named for the Austrian mathematician Eduard Helly. The theorem has applications throughout mathematical analysis. In probability theory, the result implies compactness of a tight family of measures.In mathematical analysis, a function of bounded variation, also known as a BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131111433
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Größe H4mm x B220mm x T150mm
- EAN 9786131111433
- Format Fachbuch
- Titel Helly's Selection Theorem
- Gewicht 128g
- Herausgeber Betascript Publishing
- Anzahl Seiten 84
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung