High-Performance Simulation-Based Optimization

CHF 190.35
Auf Lager
SKU
CGF3V1F3N0D
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Fr., 31.10.2025 und Mo., 03.11.2025

Details

This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That's where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.


Inhalt
Inll Criteria for Multiobjective Bayesian Optimization.- Many-Objective Optimization with Limited Computing Budget.- Multi-Objective Bayesian Optimization for Engineering Simulation.- Automatic Conguration of Multi-Objective Optimizers and Multi-Objective Conguration.- Optimization and Visualization in Many-Objective Space Trajectory Design.- Simulation Optimization through Regression or Kriging Metamodels.- Towards Better Integration of Surrogate Models and Optimizers.- Surrogate-Assisted Evolutionary Optimization of Large Problems.- Overview and Comparison of Gaussian Process-Based Surrogate Models for Mixed Continuous and Discrete Variables: Application on Aerospace Design Problems.- Open Issues in Surrogate-Assisted Optimization.- A Parallel Island Model for Hypervolume-Based Many-Objective Optimization.- Many-Core Branch-and-Bound for GPU Accelerators and MIC Coprocessors.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030187637
    • Auflage 1st edition 2020
    • Editor Thomas Bartz-Beielstein, El-Ghazali Talbi, Peter Koro ec, Bogdan Filipi
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T23mm
    • Jahr 2019
    • EAN 9783030187637
    • Format Fester Einband
    • ISBN 3030187632
    • Veröffentlichung 14.06.2019
    • Titel High-Performance Simulation-Based Optimization
    • Untertitel Studies in Computational Intelligence 833
    • Gewicht 629g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 308

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.