Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Human Activities Recognition in Still Image
Details
Recognizing human activities in still images in the absence of any prior knowledge is a challenging and painstaking task in computer vision architecture. Certainly, the absolute intricacy of single image human activities recognition (HAR) makes it more attractive. In-depth research on static image involving features extraction, classification and number of activities categorization that brings fundamental insight of HAR system is still lacking. This work made dedicated efforts to examine important stages of HAR system in still image including features extraction, classification and number of activities. Innovative techniques such as human body skeletonization and joints estimation are demonstrated to be prospective for features extraction via the extortion of angles from joints and recognition of exposed human body parts. This proposed unique method is found to increase the reliability of HAR system by using templates to complete the human body. Three types of features including the angles with joints properties, HOG and body partitions are inserted to make the system more efficient.
Autorentext
Ammar Mohammedali Fadhil receive the B.Sc degree in 1998 from Baghdad University in computer science and M.Sc computing in National Computer Center of Iraq in 2006, PhD in computer science at UTM , Malaysia 2015.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659879531
- Anzahl Seiten 260
- Genre Software
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 405g
- Größe H220mm x B150mm x T16mm
- Jahr 2016
- EAN 9783659879531
- Format Kartonierter Einband
- ISBN 3659879533
- Veröffentlichung 09.05.2016
- Titel Human Activities Recognition in Still Image
- Autor Ammar Mohammedali