Human Face Recognition Using Third-Order Synthetic Neural Networks

CHF 174.35
Auf Lager
SKU
G5JCUB40E4D
Stock 1 Verfügbar
Geliefert zwischen Mi., 25.02.2026 und Do., 26.02.2026

Details

Human Face Recognition Using Third-Order Synthetic Neural Networks explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. High-order networks require little training data (hence, short training times) and have been used to perform transformation-invariant recognition of relatively simple visual patterns, achieving very high recognition rates. The successful results of these methods provided inspiration to address more practical problems which have grayscale as opposed to binary patterns (e.g., alphanumeric characters, aircraft silhouettes) and are also more complex in nature as opposed to purely edge-extracted images - human face recognition is such a problem.
Human Face Recognition Using Third-Order Synthetic Neural Networks serves as an excellent reference for researchers and professionals working on applying neural network technology to the recognition of complex visual patterns.

Klappentext

Human Face Recognition Using Third-Order Synthetic Neural Networks explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. High-order networks require little training data (hence, short training times) and have been used to perform transformation-invariant recognition of relatively simple visual patterns, achieving very high recognition rates. The successful results of these methods provided inspiration to address more practical problems which have grayscale as opposed to binary patterns (e.g., alphanumeric characters, aircraft silhouettes) and are also more complex in nature as opposed to purely edge-extracted images - human face recognition is such a problem. Human Face Recognition Using Third-Order Synthetic Neural Networks serves as an excellent reference for researchers and professionals working on applying neural network technology to the recognition of complex visual patterns.


Inhalt

  1. Introduction.- 1.1 Objective.- 1.2 Background to Neural Networks.- 1.3 Organization of book.- 2. Face Recognition.- 2.1 Background.- 2.2 Various methods.- 2.3 Neural Net Approach.- 3. Implementation of Invariances.- 3.1 Matching of similar triplets.- 3.2 Software implementation.- 4. Simple Pattern Recognition.- 4.1 Procedure.- 4.2 Results.- 5. Facial Pattern Recognition.- 5.1 Two-dimensional moment invariants.- 5.2 Face Segmentation.- 5.3 Isodensity regions.- 5.4 Reducing sensitivity to lighting conditions.- 5.5 Image encoding algorithm.- 5.6 The use of gradient images.- 6. Network Training.- 6.1 Training algorithms.- 6.2 Modifications to training algorithms.- 6.3 Training image data.- 6.4 Results.- 7. Conclusions amp; Contributions 111.- 8. Future Work.- 8.1 Simultaneous Training on all four Isodensity Images.- 8.2 Higher-resolution coarse image size.- 8.3 Automatic face recognition.- 8.4 MIMO third-order networks.- 8.5 Zernike and Complex moments.- 8.6 Recognition of facial expressions (moods).- Index 119.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781461368328
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T9mm
    • Jahr 2012
    • EAN 9781461368328
    • Format Kartonierter Einband
    • ISBN 1461368324
    • Veröffentlichung 12.10.2012
    • Titel Human Face Recognition Using Third-Order Synthetic Neural Networks
    • Autor Okechukwu A. Uwechue , Abhijit S. Pandya
    • Untertitel The Springer International Series in Engineering and Computer Science 410
    • Gewicht 230g
    • Herausgeber Springer
    • Anzahl Seiten 144
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38