Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Hybrid Classification Based Intrusion Detection and Prevention System
Details
The main contribution of this work is to improve the security of the system and efficiently detect the intruder attack in the cloud environment. It also concentrates on the resource allocation process, which reduces the execution time of the packets with improving the service rate of packets. The false alarm rate and detection rate of the proposed system are improved when compared to the existing traditional intrusion detection approaches.To sum up, the research process provides an efficient intrusion detection and prevention system for solving intruder attacks and security problems. Comparison of traditional machine learning methods and their hybrid methods are also reported for the process of intrusion detection mechanism.
Autorentext
Dr. V. Balamurugan is working as an Associate Professor/ CSE.Prof. S. Faizal Mukthar Hussain is working as an Assistant Professor/ CSE and Dr. S. Selvaperumal is working as a Dean - Research and Professor/ EEE in Mohamed Sathak Engineering College, Sathak Nagar, SH 49, Kilakarai, Ramanathapuram, Tamilnadu, India.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786206754480
- Genre Electrical Engineering
- Sprache Englisch
- Anzahl Seiten 144
- Herausgeber LAP LAMBERT Academic Publishing
- Größe H220mm x B150mm x T10mm
- Jahr 2023
- EAN 9786206754480
- Format Kartonierter Einband
- ISBN 6206754480
- Veröffentlichung 28.07.2023
- Titel Hybrid Classification Based Intrusion Detection and Prevention System
- Autor Balamurugan V. , Selvaperumal S. , Faizal Mukthar Hussain S.
- Untertitel on Cloud Environment
- Gewicht 233g