Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Hybrid Depression Detection Framework Using BILSTM
Details
Nowadays, due to mental stress, a significant section of society is affected by depression. There may be several reasons for depression, especially in adults. As a different person has different symptoms, and its identification is a significant challenge. Most people feel shy to accept that they are suffering from depression, while others are unaware of their depressed mental health. The objective of this work is to design and develop a practical tool or model to diagnose depression. In this work, a hybrid system is designed and simulated for detecting depression using EEG features, and facial features as a biological feature give an accurate diagnosis. EEG (Electroencephalogram) is the most adaptive way that can reflect the actual mental state among all biological signals.
Autorentext
Me llamo Danniel Shazmeer. He completado mi Master en Tecnología de la Información en la Universidad de la Ciudad de Malasia. Me gusta conocer gente nueva y encontrar formas de ayudarles a tener una experiencia edificante. Atribuyo este éxito a mi habilidad para planificar, programar y manejar muchas tareas diferentes a la vez.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Autor Danniel Shazmeer Bin Abdul Hamid , Shyam Bihari Goyal
- Titel Hybrid Depression Detection Framework Using BILSTM
- Veröffentlichung 13.01.2021
- ISBN 6203200395
- Format Kartonierter Einband
- EAN 9786203200393
- Jahr 2021
- Größe H220mm x B150mm x T6mm
- Untertitel Detection and Diagnosis
- Gewicht 143g
- Genre Medizin
- Anzahl Seiten 84
- Herausgeber LAP LAMBERT Academic Publishing
- GTIN 09786203200393