Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Hydrodynamic scaling limit of continuum solid-on-solid model
Details
Interacting particle systems are stochastic processes proposed by statistical mechanics for the movement of particles at the microscopic scale, with the aim to explain certain physical phenomena. The book discuses the continuum solid-on-solid model, also known as the fourth-order Ginzurg-Landau model, a model developed to understand the relaxation to equilibrium of a crystal surface through diffusion. With rigorous arguments the hydrodynamic scaling limit of continuum solid-on-solid model is shown to be a fourth-order, nonlinear partial differential equation. The fluctuation-dissipation equation of the model is established due to the mathematical result that the model exact functions form a subspace of codimension one in the space of closed functions. Connections between the spaces of closed and exact functions for the second-order Ginzburg-Landau model and algebraic topology are described.
Autorentext
Anamaria Savu received her PhD from the University of Toronto for her research in the area of interacting particle systems, a large and growing field of probability theory. She then pursued postdoctoral studies at Queen's University and University of Alberta. Currently she works on statistical methodologies for research in health sciences.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783845413945
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2011
- EAN 9783845413945
- Format Kartonierter Einband
- ISBN 3845413948
- Veröffentlichung 22.08.2011
- Titel Hydrodynamic scaling limit of continuum solid-on-solid model
- Autor Anamaria Savu
- Untertitel Closed and exact functions in the context of Ginzburg-Landau models
- Gewicht 149g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 88
- Genre Mathematik