Hyperspectral Image Analysis

CHF 197.55
Auf Lager
SKU
VFE9DIIUR4S
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Fr., 10.10.2025 und Mo., 13.10.2025

Details

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas ofimage analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.

Provides a comprehensive review of the state of the art in hyperspectral image analysis Presents perspectives from experts who are pioneers in a broad range of signal processing and machine learning fields related to hyperspectral imaging and remote sensing Is suitable both as a reference book and as a textbook for advanced graduate courses on multi-dimensional image processing

Autorentext
Dr. Saurabh Prasad is an Associate Professor at the Department of Electrical and Computer Engineering at the University of Houston, TX, USA.

Dr. Jocelyn Chanussot is a Professor in the Signal and Images Department at Grenoble Institute of Technology, France.


Inhalt

  1. Introduction.- 2. Machine Learning Methods for Spatial and Temporal Parameter Estimation.- 3. Deep Learning for Hyperspectral Image Analysis, Part I: Theory and Algorithms.- 4. Deep Learning for Hyperspectral Image Analysis, Part II: Applications to Remote Sensing and Biomedicine.- 5. Advances in Deep Learning for Hyperspectral Image Analysis - Addressing Challenges Arising in Practical Imaging Scenarios.- 6. Addressing the Inevitable Imprecision: Multiple Instance Learning for Hyperspectral Image Analysis.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030386160
    • Auflage 1st edition 2020
    • Editor Jocelyn Chanussot, Saurabh Prasad
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H241mm x B160mm x T31mm
    • Jahr 2020
    • EAN 9783030386160
    • Format Fester Einband
    • ISBN 3030386163
    • Veröffentlichung 28.04.2020
    • Titel Hyperspectral Image Analysis
    • Untertitel Advances in Machine Learning and Signal Processing
    • Gewicht 869g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 472
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.