Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
ICA FEATURE EXTRACTION AND SUPPORT VECTOR MACHINE IMAGE CLASSIFICATION
Details
This book presents a detailed examination of the use of Independent Component Analysis (ICA) for feature extraction and a support vector machine (SVM) for applications of image recognition. The performance of ICA as a feature extractor is compared against the benchmark of Principal Component Analysis (PCA). Given the intrinsic relationship between PCA and ICA, the theoretical implications of this relationship in the context of feature extraction is investigated in detail. The study outlines specific theoretical issues which motivate the need for a feature selection scheme with ICA when used with Euclidean distance classification. Experimental verification of the behavior of ICA with Euclidean distance classifiers is provided by pose and position measurement experiments under conditions of lighting variance and occlusion. It is shown that (provided that the features are selected in an intelligent way), ICA derived features are more discriminating than PCA. ICA's utility in object recognition under varying illumination is exemplified with databases of specular objects and faces..
Autorentext
Dr. Jeff Fortuna holds a PhD in Electrical Engineering from McMaster University in Hamilton, Ontario, Canada, where he continues to teach. Additionally, he is currently a postdoctoral fellow at the University of Toronto. His research interests include computer vision and machine learning.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783843371193
- Genre Elektrotechnik
- Sprache Englisch
- Anzahl Seiten 184
- Größe H220mm x B150mm x T12mm
- Jahr 2010
- EAN 9783843371193
- Format Kartonierter Einband
- ISBN 3843371199
- Veröffentlichung 05.11.2010
- Titel ICA FEATURE EXTRACTION AND SUPPORT VECTOR MACHINE IMAGE CLASSIFICATION
- Autor Jeff Fortuna
- Untertitel Theory and Practice
- Gewicht 292g
- Herausgeber LAP LAMBERT Academic Publishing