Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Identification of Optimality of Multiple Hypotheses Testing
Details
Decision and estimation statistical theory share with information theory the common outlook of optimally using a set of random data, so this fields have been coming close together. Solved problems are particular cases in the generalizations of classical hypotheses testing and in relatively recent studies of statistical identification of distributions of randomly acting objects. The main aim of the present investigation is to solve the problem of studying the matrix E of error probabilities exponents of the optimal test for L 2 hypotheses by using the theory of large deviations for one and two independent objects. The second aim is solution of the problem of identification under reliability requirements of hypotheses concerning distribution of Markov simple homogenous stationary chain with a finite number of states. The study of this book recommend for Master and PhD students and Scientific research in branches of Applied mathematics, Statistics and also in Engineering.
Autorentext
Dr. Leader Navaei is a scientific member and the head of faculty of Applied Mathematics and Statistics of Payame Noor University (P.N.U), branch of Azarshahr city, Islamic Republic of Iran. His current research includes Markov process, large deviation techniques and applied information theory in multiple hypotheses testing.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838382395
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9783838382395
- Format Kartonierter Einband
- ISBN 3838382390
- Veröffentlichung 27.07.2010
- Titel Identification of Optimality of Multiple Hypotheses Testing
- Autor Leader Navaei
- Untertitel Basic, Concepts, Methods
- Gewicht 137g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 80
- Genre Mathematik