Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Image-Based Prediction of Retinal Disease Progression
Details
This book constitutes the proceedings from the MICCAI Challenges, Device-Independent Diabetic Macular Edema Onset Prediction, DIAMOND 2024, and Monitoring Age-Related macular degeneration progression in Optical coherence tomography, MARIO 2024, held in conjunction with the 27th International conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco in October 2024.
The 15 papers included in this book from MARIO 2024 were carefully reviewed and selected from 17 submissions, whereas the 6 papers included here from DIAMOND 2024 were carefully reviewed and selected from 8 submissions. These papers focus on a wide range of state-of-the-art deep learning approaches to derive patient specific rules for Diabetic retinopathy (DR) and age-related macular degeneration (AMD) progression prediction from retinal images.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031866500
- Herausgeber Springer Nature Switzerland
- Anzahl Seiten 224
- Lesemotiv Verstehen
- Genre Software
- Editor Gwenolé Quellec, Mostafa El Habib Daho, Rachid Zeghlache
- Sprache Englisch
- Untertitel MICCAI Challenges, DIAMOND 2024 and MARIO 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings
- Größe H235mm x B155mm
- Jahr 2025
- EAN 9783031866500
- Format Kartonierter Einband (Kt)
- ISBN 978-3-031-86650-0
- Veröffentlichung 27.04.2025
- Titel Image-Based Prediction of Retinal Disease Progression