Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Improved Direct Estimators for Small Areas
Details
Unbiased direct estimators for small area quantities are usually considered too variable to be of any practical use. This book described a class of model based direct estimators (MBDE) for small area quantities that appears to overcome this objection, in the sense that these estimators are comparable in efficiency to the indirect model-based small area estimators that are now widely used. There are many practical advantages associated with such MBDE estimators, arising from the fact that they are computed as weighted linear combinations of the actual sample data from the small areas of interest. In this case the weights borrow strength via a model that explicitly allows for small area effects. An extension of the MBDE approach to multipurpose weighting based small area estimation is also discussed. The MBDE approach to small area estimation for skewed data where the linear model provides poor fit and standard methods of small area estimation are inefficient is also considered.
Autorentext
Hukum Chandra is working as Senior Scientist at Indian Agricultural Statistics Research Institute, New Delhi. He did Ph.D. from the University of Southampton and Post Doctorate from the University of Wollongong. He is recipient of Commonwealth Scholarship, U.K. and prestigious Cochran-Hansen Award 2009 by the IASS.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659176968
- Sprache Englisch
- Auflage Aufl.
- Größe H9mm x B220mm x T150mm
- Jahr 2012
- EAN 9783659176968
- Format Kartonierter Einband (Kt)
- ISBN 978-3-659-17696-8
- Titel Improved Direct Estimators for Small Areas
- Autor Hukum Chandra
- Untertitel Model based direct method for small area estimation
- Gewicht 255g
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 180
- Genre Mathematik