Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
In Situ Characterization Methodology for the Design and Analysis of Composite Pressure Vessels
Details
With his work, Martin Nebe provides principal insights into the mechanical response of composite pressure vessels subjected to internal pressure. By establishing and validating an in situ characterization methodology, the vessel's geometry, its deformation behavior and the damage evolution process under internal pressure loading become accessible. This not only permits to trace back certain phenomena related to the manufacturing of these components but also allows to verify analytical and numerical modeling strategies. The exercised correlation of predicted and experimental results delivers detailed insights into design considerations to composite pressure vessels such as the definition of stacking sequence. The transfer of knowledge to a fullscale vessel geometry, which is representative for the use in fuel cell electric vehicles underlines the industrial application of this work. By combining numerical modeling, filament winding and experimental characterization, this work provides asound foundation for future developments in the area of composite pressure vessels used for hydrogen storage.
Autorentext
About the author Martin Nebe worked as Ph.D. candidate at the Fuel Cell Department of an automotive company. In cooperation with the Department of Materials Test Engineering (WPT) at the TU Dortmund University, he completed his Ph.D. about the characterization, the analysis and the design of composite pressure vessels used for hydrogen storage.
Inhalt
Motivation and scope.- Literature review.- Material and methods.- In situ characterization methodology.- FE modeling and correlation.- Influence of stacking sequence.- Application on fullscale geometry.- Design considerations to composite pressure vessels.- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783658357962
- Anzahl Seiten 179
- Lesemotiv Verstehen
- Genre Books on Technology
- Auflage 1st ed. 2022
- Herausgeber Springer Gabler
- Untertitel Werkstofftechnische Berichte Reports of Materials Science and Engineering
- Größe H11mm x B148mm x T210mm
- Jahr 2022
- EAN 9783658357962
- Format Kartonierter Einband
- ISBN 978-3-658-35796-2
- Titel In Situ Characterization Methodology for the Design and Analysis of Composite Pressure Vessels
- Autor Martin Nebe
- Sprache Englisch