Inclusion exclusion principle

CHF 43.15
Auf Lager
SKU
KCAV3C7VO3A
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

In combinatorial mathematics, the inclusion exclusion principle (also known as the sieve principle) states that if A1, where A denotes the cardinality of the set A. For example, taking n = 2, we get a special case of double counting; in words: we can count the size of the union of sets A and B by adding A and B and then subtracting the size of their intersection. The name comes from the idea that the principle is based on over-generous inclusion, followed by compensating exclusion. When n 2 the exclusion of the pairwise intersections is (possibly) too severe, and the correct formula is as shown with alternating signs.This formula is attributed to Abraham de Moivre; it is sometimes also named for Daniel da Silva, Joseph Sylvester or Henri Poincaré.

Klappentext

In combinatorial mathematics, the inclusion-exclusion principle (also known as the sieve principle) states that if A1, where |A| denotes the cardinality of the set A. For example, taking n = 2, we get a special case of double counting; in words: we can count the size of the union of sets A and B by adding |A| and |B| and then subtracting the size of their intersection. The name comes from the idea that the principle is based on over-generous inclusion, followed by compensating exclusion. When n 2 the exclusion of the pairwise intersections is (possibly) too severe, and the correct formula is as shown with alternating signs.This formula is attributed to Abraham de Moivre; it is sometimes also named for Daniel da Silva, Joseph Sylvester or Henri Poincaré.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130646844
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • Sprache Englisch
    • Größe H220mm x B150mm x T5mm
    • Jahr 2010
    • EAN 9786130646844
    • Format Fachbuch
    • ISBN 978-613-0-64684-4
    • Titel Inclusion exclusion principle
    • Untertitel Cardinality, Double counting (proof technique), Union (set theory), Intersection (set theory), Daniel da Silva (mathematician), James Joseph Sylvester
    • Gewicht 130g
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38